MATLAB® Support Package for Arduino®
Hardware

User’s Guide

R2014a

MATLAB

<} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks.com

Sales and services: www.mathworks.com/sales_and_services
User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB"® Support Package for Arduino® Hardware User’s Guide
© COPYRIGHT 1984-2014 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www. mathworks.com/patents for more information.

Revision History
September 2014 Online only New for Version 14.1.0 (R2014a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Setup and Configuration

1

Install Support for Arduino Hardware 1-2

Install the Support Package 1-2
Accessing Examples 1-5
Arduino Hardware 1-6

Read Write Functions 1-6
Supported Hardware 1-7
Connect to Arduino Hardware 1-8
Read and Write to Digital Pin 1-9
Play a Tone on a Piezo Speaker 1-10
Control LEDs 1-11

2|

Arduino I12C Interface 2-2
I2C Functions e 2-3

Communicate With an I12C Device Using EEPROM Data . .. 2-4

iii

iv

Contents

SPI Sensors

3

Arduino and SPI Interface 3-2
SPI Functions 3-2

Servo Motors

4

Servo Motors 4-2
Servo Functions 4-2
Rotate a Servo Motor 4-3
Add-On Shields

Add-On Shields e 5-2
Add-On Functions 5-2

Functions — Alphabetical List

6|

Troubleshooting
Cannot Auto Detect Arduino hardware 7-2
Update Device Driver on a Windows System 7-2

Unsupported Device 7-2

Manual disconnect, 7-2
Why do I need to specify board type and port? 7-3
Find port number on Windows 7-3
Find port number on Macintosh 7-4

My I2C server code hangs 7-5
I lost my Arduino connection 7-6
Unplugged hardware 7-6
Board with low data memory 7-6

Too many device objects, 7-6

Pin is Not Receiving Data 7-7
Iseestrangedata 7-8
Pin not receiving proper signal 7-8
Board with low data memory 7-8
Incorrect input or output 7-8
Problems using pulse duration setting on Servo 7-9
My Servo Pulse is Not Working 7-10
Hardware reserved error 7-11
Cannot stack motor shields 7-12
My Stepper is Not Rotating 7-13
My Motor is Not Working 7-14
INeed More Help 7-15
Examples

8

Setup and Configuration

* “Install Support for Arduino Hardware” on page 1-2
+ “Accessing Examples” on page 1-5

* “Arduino Hardware” on page 1-6

+ “Supported Hardware” on page 1-7

+ “Connect to Arduino Hardware” on page 1-8

+ “Read and Write to Digital Pin” on page 1-9

* “Play a Tone on a Piezo Speaker” on page 1-10

* “Control LEDs” on page 1-11

1 Setup and Configuration

Install Support for Arduino Hardware

1-2

Install the MATLAB® Support Package for Arduino® Hardware to add support for
Arduino hardware.

The installation adds these items on your host computer:

* Third-party software development tools
* MATLAB commands

+ Examples

When you complete installation, you can use MATLAB commands to control, and retrieve
data from, Arduino hardware and peripherals.

Install the Support Package

This example shows how to add support for Arduino hardware to the MATLAB product.
After you complete this process, you can run MATLAB code on your Arduino hardware.

To install support for Arduino hardware:

1 Ina MATLAB Command window, enter supportPackageInstaller to open the
Support Package Installer.

2 Follow the instructions and default settings provided by Support Package Installer
to complete the installation. For more information about the options on a particular
screen, click the Help button.

3 When the installation is complete Windows users may see a Setup Support Package
screen.

Install Support for Arduino Hardware

Support Package Installer

|arduino 7|

4 Click next to set up the support package. The installer prompts you for an Arduino
Driver Installation.

1-3

1 Setup and Configuration

1-4

-) Support Package Installer =]
Arduino USE Driver Installation
‘ou can install the driver For Arduino hardware,
This process installs the Arduino USE driver on your deskbop,
After you complete this setup , you can connect to your Arduino hardware in MATLAB.
To install Arduing USE Driver:
1, Click on the "Mext" button belows bo continue with the installation,
Motes:
Installation of driver requires Administrator privileges, Make sure vou have setup vour Windows
User account Conkral{UAC) and Local Security Policy Settings correctly.
If this is the first time wsing Arduino on this machine, you need to replug the hardware after

the installation finishes.

IV Enable Installation of Arduina USE Driver

< Back | Next = | Cancel | Help |

5 If you have administrative privileges, select Enable Installation of Arduino USB
Driver and click next.

The installation process adds the following items to your host computer:

* Third-party software development tools, such as the Arduino software
+ Additional driver and firmware.

+ Examples for getting started and learning about specific features

Note: If you do not have administrative privileges or do not wish to update your drivers,
you can skip this step and update later using the targetupdater command.

To update, repeat these steps.

Accessing Examples

Accessing Examples

To access featured examples for MATLAB Support Package for Arduino Hardware open
MATLAB and type:

arduinoExamples

1-5

1 Setup and Configuration

Arduino Hardware

1-6

Arduino is an open-source hardware available at a low cost. The design is based on a
simple microcontroller and you can read and write to its physical computing platform.
You can use both official Arduino hardware as well as hardware made by other vendors.
Currently you can use the Arduino hardware manufactured by SparkFun Electronics.
The Arduino interface connects to external devices like sensors and motors that you can
communicate with using MATLAB.

MATLAB Support Package for Arduino Hardware enables you to communicate with
Arduino devices via MATLAB command line interface. You can communicate with
the device input and output peripherals and communication interface. You can also
communicate sensors connected to Arduino hardware and actuate devices attached to
Arduino hardware.

Read Write Functions

configureDigitalPin readDigitalPin writeDigitalPin writePWMVoltage

writePWMDutyCycle playTone configureAnalogPin readVoltage arduinoExamples

Supported Hardware

Supported Hardware

For a list of currently supported Arduino hardware, see the Supported Hardware page:

http://www.mathworks.com/hardware-support/arduino-matlab.html

1-7

http://www.mathworks.com/hardware-support/arduino-matlab.html

1 Setup and Configuration

Connect to Arduino Hardware

Make sure the Arduino is connected to the computer. If the device is unofficial, note the
port and board name.

Connect to an official Arduino.

a arduino

a:
arduino with properties:

Port: 'COM25'
Board: 'Uno’
AvailableAnalogPins: [0 1 2 3 4 5]
AvailableDigitalPins: [2 3 4 56 7 8 9 10 11 12 13]
Libraries: {'I2C' 'SPI' 'Servo'}

Connect to an unofficial (clone) Arduino by specifying the port and board name.

a arduino('com3','uno')

a:
arduino with properties:

Port: 'COM3'
Board: 'Uno'
AvailableAnalogPins: [0 1 2 3 4 5]
AvailableDigitalPins: [2 3 456 7 8 9 10 11 12 13]
Libraries: {'I2C' 'SPI' 'Servo'}

Read and Write to Digital Pin

Read and Write to Digital Pin

This example shows how to configure a push button on a digital pin on an Arduino
hardware and read the state

Connect a push button to digital pin 12 on your Arduino.

Create an Arduino object and configure digital pin 12 to connect to a push button with
mode pullup.

a = arduino;
configureDigitalPin(a,12, 'pullup');

Read the state of the button.

buttonState readDigitalPin(a,12)

buttonState

1

Change the state by pressing on the push button and read it again.

buttonState readDigitalPin(a,12)

buttonState =

0

1-9

1 Setup and Configuration

Play a Tone on a Piezo Speaker

This example shows how to configure a piezo speaker on digital pin and play a tone at a
specified frequency for a specified amount of time.

Connect a piezo speaker to pin 11 on your Arduino.

Create an Arduino object.

a = arduino;

Play a tone at 2400Hz frequency for 10 seconds.

playTone(a,11,2400,10);

To stop playing the tone, change the duration to 0 seconds or change the frequency to 0 Hz.

playTone(a,11,2400,0);

1-10

Control LEDs

Control LEDs

This example shows how to configure LEDs to turn on and off and to dim and brighten
using MATLAB commands.

Connect a an LED to pin 9 on your Arduino.

Create an Arduino object.

a = arduino;

Write data to the digital pin to turn the LED on and off repeatedly for 10 seconds.

for idx = 0:10
writeDigitalPin(a,9,1);
pause(0.5);
writeDigitalPin(a,9,0);
pause(0.5);

end

Change the brightness from maximum to minimum using the digital pins PWM duty
cycle.

for brightness = 1:-0.1:0
writePWMDutyCycle(a,9,brightness);
pause(0.5);

end

1-11

12C Sensors

“Arduino I2C Interface” on page 2-2
“Communicate With an I12C EEPROM Device” on page 2-4

2

12C Sensors

Arduino 12C Interface

2-2

12C, or Inter-Integrated Circuit, is a chip-to-chip protocol for communicating with low-
speed peripherals. MATLAB Support Package for Arduino Hardware includes the 12C
library which creates an interface to communicate with I12C devices. Each Arduino board
has specific pins I12C interface. Refer to your hardware specifications to locate the correct
pins.

You can use 12C devices in many applications including:

* real-time clocks

+ digital potentiometers

* temperature sensors

+ digital compasses

* memory chips

* FM radio circuits

* input/output expanders

* LCD controllers

* amplifiers

Arduino hardware has one or two I2C buses. Each bus has an I12C Master connected to
two bidirectional lines, serial data line (SDA), and serial clock (SCL). These two lines are
connected to a pair of pins on the hardware. You can connect multiple I2C devices, such
ADCs, LCDs, and sensors, to the I2C pins on the Arduino hardware. Each 12C device on
an I2C bus must have a unique address. Most devices have a default address assigned
by the manufacturer. If the address is not unique, refer to the device data sheet and

reconfigure the address. Often, you can reconfigure the address using a pair of jumpers
on the device. MATLAB Support Package for Arduino Hardware only supports 7-bit addressing.

Arduino 12C Interface

Vdd

R ?
R
SDA

‘ ‘ SCL

Slave 1 Slave 2 Slave 3

Ao M e (ADC) (LCD) (Sensor)

12C Functions

arduino i2cdev scanI2CBus readRegister write writeRegister arduinoExamples

2-3

2 12C Sensors

Communicate With an 12C EEPROM Device

This example shows how to store and retrieve data from an EEPROM on an I12C device.
Using EEPROM you can read, erase, and rewrite individual bits of data from the sensor’s
memory. Before using this example, wire an EEPROM to the I12C pins on your Arduino.

Create an I12C connection on your Arduino.
Create an Arduino object and include the I12C library.
arduino('com22', 'uno', 'Libraries', 'I2C');

Scan for I12C address on the Arduino.

addrs scanI2CBus(a)

addrs =
'0x48'

Create an I12C device object using the address and the Arduino object.
td = i2cdev(a, '0x48');

The bus number defaults to 0. If you have hardware that has dedicated I12C interfaces
SDA1 and SCL1, you may need to specify bus number 1.

Write “Hello World!” to the device and read it back.
Write “Hello World!” to the device register at address 0.
write(eeprom,[0 'Hello World!']);
Write “Hello World!” to the device register at address 8.
write(eeprom,[8 'Hello World!']);

Enable EEPROM and read 12 bytes back.

write(eeprom,0);
char(read(eeprom,12))"'

ans =
Hello World!

2-4

SPI Sensors

* “Arduino and SPI Interface” on page 3-2

3 SPI Sensors

Arduino and SPI Interface

SPI, or Serial Peripheral Interface is a full-duplex serial protocol for communicating
with high-speed peripherals, such as microcontrollers. You can communicate SPI devices
and sensors via SPI interface on Arduino boards using MATLAB Support Package

for Arduino Hardware. You can also use this interface to communicate between two
microcontrollers. Typically, SPI devices have one master device controlling all peripheral
devices. The SPI library has three common pins that are hardwired and a dedicated pin
for output.

+ MISO, receives data from the SPI peripheral device

+ MOSI, which outputs data to the SPI peripheral device

* SCLK, which outputs a serial clock signal to synchronize communications

* SS, which enables and disables peripheral devices from the master

Every SPI device implements SPI standards differently. Refer to the device datasheet
to understand how your device will work. SPI Devices transmit data in four basic modes

and control the clock phase and the clock polarity. For more information refer to the SPI
standards documentation.

SPI Functions

spidev writeRead arduinoExamples

3-2

Servo Motors

+ “Servo Motors” on page 4-2

+ “Rotate a Servo Motor” on page 4-3

4 Servo Motors

Servo Motors

Servo motors have integrated circuitry inside the motor unit. The shaft is typically
is fitted with a gear and can be positioned as needed. You can use MATLAB Support
Package for Arduino Hardware to control movement of the shaft.

You control servos using PWM signals. The motor turns 90° in either direction based on
the maximum and minimum pulse width and the pulse-repetition rate.

There are two types of servos:

+ AC: Heavy duty motors typically used in industrial machinery. These motors can
handle high level of current surges.

+ DC Motor: Built for smaller applications and continuous rotation. The output shaft
houses two ball bearings which reduce friction and give you easy access to the rest-
point adjustment potentiometer.

You can use the servo library on MATLAB to work with small and hobby DC motors.

Servo Functions

arduino servo readPosition writePostion arduinoExamples

Rotate a Servo Motor

Rotate a Servo Motor

This example shows how to rotate a servo motor by its maximum angle.
Create an Arduino object and include the servo library.
a = arduino('com22', 'uno', 'Libraries', 'Servo');

Configure a servo object using the PWM pin 5 and set the minimum pulse duration to
1e-3 seconds and the maximum pulse durations to 2e - 3 seconds.

s = servo(a,5, 'MinPulseDuration', 1e-3, 'MaxPulseDuration',2e-3);
Write 1, to turn the motor by the maximum angle.
writePosition(s, 1);

The angle depends on device pulse duration. Refer to your device data sheet for valid
pulse duration values.

Add-On Shields

5 Add-On Shields

Add-On Shields

Add-on shields are boards you can plug on to Arduino hardware and extend the hardware
capabilities. With Shields you can control motors from your board. Currently you can use
Adafruit Motorshields V2 with MATLAB Support Package for Arduino Hardware.

Add-On Functions

arduino addon dcmotor servo start stop stepper move release arduinoExamples

5-2

Functions — Alphabetical List

6 Functions — Alphabetical List

addon

Create add-on library connection

Syntax

dev = addon(a,lib)
dev addon(a,lib,Name,Value)

Description

dev = addon(a,lib) creates a connection to the specified add-on library on the
Arduino hardware a.

dev = addon(a,lib,Name,Value) creates an add-on library connection with
additional options specified by one or more Name,Value pair arguments.

Examples

Create an Add-On Library Object

Create an Arduino object and create the Adafruit Motor Sheild V2 object.

a = arduino()
dev = addon(a, 'Adafruit\Motorshieldv2")

dev =
motorshieldv2 with properties:
Pins: A4(SDA), A5(SCL)
I2CAddress: 96 (0x60)
PWMFrequency: 1600 (Hz)
Specify 12C Address and PWM Frequency to an Add-On Library

Create an arduino object and create the Adafruit Motor Sheild V2 object with an 12C
address of 0x61 and PWM frequency of 1200.

6-2

addon

a = arduino()
dev = addon(a, 'Adafruit\Motorshieldv2','i2caddress', 'Ox61' 'pwmfrequency', 1200)

dev
motorshieldv2 with properties:

Pins: A4(SDA), A5(SCL)
I2CAddress: 97 (0x61)
PWMFrequency: 1200 (Hz)

Input Arguments

a — Arduino hardware connection
object

Arduino hardware connection created using arduino, specified as a object.

1lib — Add-on library name

string

Add-on library vendor and name specified as a string. You must specify both the add-on
library vendor and the name. Currently only Motor Shield V2 from Adafruit is supported,
which must be specified as 'Adafruit\MotorShieldv2"'.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namei,Valuel,...,NameN,ValueN.

Example: dev = addon(a, ‘Adafruit\MotorshieldV2’,‘i2caddress’, ‘0x61’
‘pwmfrequency’, 3200);

'i2caddress' — I12C device address
numeric | string

6-3

6 Functions — Alphabetical List

I2C bus address specified as a number a string. You can specify either a hexadecimal
value or a scalar integer. The default value is 90 (0x60).

Example: shield = addon(a, ‘Adafruit
\MotorshieldV2’, ‘i2caddress’,0x61); setsthe I2C address to 97 or 0x61.

'pwmfrequency' — Add-on device PWM frequency

numeric

Add-on device PWM frequency specified as a number.

Example: shield = addon(a, ‘Adafruit\MotorshieldV2’, ‘pwmfrequency’
3200) ; sets the PWM frequency to 3200.

Output Arguments

dev — Add-on library connection
object

Add-on library connection, returned as an object.

See Also

arduino | dcmotor | servo | stepper

6-4

arduino

arduino

Connect to Arduino hardware

Syntax

arduino
arduino(port,board)
arduino(port,board,Name,Value)

[SUI I
In

Description

a = arduino creates a connection to the first official Arduino hardware installed on
your system.

a = arduino(port,board) creates a connection to unoffical (clone) Arduino
hardware on the specified port.

a = arduino(port,board,Name,Value) creates a connection with additional
options specified by one or more Name,Value pair arguments.

Examples

Connect to Arduino hardware

Connect to an Arduino Uno on port 3.

a arduino('com3','uno")

a =
arduino with properties:

Port: 'COM3'
Board: 'Uno'
AvailableAnalogPins: [0 1

2]
AvailableDigitalPins: [2 3 4

3 4
56 8 9 10 11 12 13]

5
7

6 Functions — Alphabetical List

Libraries: {'I2C' 'SPI' 'Servo'}
Connect to an Arduino on a Mac

Connect to an Arduino Uno on port /dev/tty.usbmodem1421.

a = arduino('/dev/tty.usbmodem1421','uno"')
a =
arduino with properties:

Port: '/dev/tty.usbmodem1421'
Board: 'Uno'
AvailableAnalogPins: [0 1 2 3 4 5]
AvailableDigitalPins: [2 3 4 56 7 8 9 10 11 12 13]
Libraries: {'I2C' 'SPI' 'Servo'}

Specify an Arduino Library

Limit the Arduino to use only an I2C library.

a = arduino('com3','Uno','libraries','I2C")

a =
arduino with properties:
Port: 'COM3'

Board: 'Uno'
Libraries: {'I2C'}

Input Arguments

port — Hardware port
string

Hardware port specified as a string.
Example: a = arduino(‘com5’)

board — Name of Arduino enabled board
string

arduino

Name of the Arduino enabled board specified as a string.
Example:

a = arduino(‘com5’, ‘Uno’) creates a connection to an Arduino Uno board using
port 5.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namei1,Valuel,...,NameN,ValueN.

Example: a = arduino('com3','Uno', 'libraries', 'I2C")

'libraries' — Name of Arduino library
{'I2C' 'Servo' 'SPI'} (default) | string

Name of the Arduino library specified as the comma-separated pair consisting of
'libraries' and a string. Libraries installed by default extend the Arduino environment.

Example: a = arduino('com9', 'libraries', 'spi') limits the environment to the
specified library.

Example: a = arduino('com9', 'libraries', 'Adafruit/MotorShieldv2")
only includes the Adafruit Motor Shield V2 library and its dependent libraries

Output Arguments

a — Arduino hardware connection
object

Arduino hardware connection created using arduino, returned as an object.

See Also

listArduinoLibraries

6-7

6 Functions — Alphabetical List

6-8

arduinoExamples

Open featured examples

Syntax

arduinoExamples

Description

arduinoExamples opens featured examples for MATLAB Support Package for Arduino
Hardware.

See Also

arduino

configureAnalogPin

configureAnalogPin

Set analog pin mode

Syntax

configureAnalogPin(a,pin,mode)

Description

configureAnalogPin(a,pin,mode) sets the specified analog pin on the Arduino
hardware in connection a to the specified mode. To get the pin mode, omit the mode
argument from the input arguments.

Examples

Configure analog pin to input mode

a = arduino();
configureAnalogPin(a,2, 'input');

Input Arguments

a — Arduino hardware connection
object

Arduino hardware connection created using arduino, specified as an object.

pin — Analog pin number
numeric

Analog pin number on the physical hardware, specified as a number.
mode — Analog pin mode

‘unset' (default) | string
6-9

6 Functions — Alphabetical List

Analog pin mode specified as a string. Valid pin modes are:

* input
« i2c

See Also

arduino | readVoltage

6-10

configureDigitalPin

configureDigitalPin

Set digital pin mode

Syntax

configureDigitalPin(a,pin,mode)

Description

configureDigitalPin(a,pin,mode) sets the specified digital pin on the Arduino
hardware in connection a to the specified mode. To get the pin mode, omit the mode
argument from the input arguments.

Examples

Configure Digital Pin to Output Mode

a = arduino();
configureDigitalPin(a,3, 'ouput');

Input Arguments

a — Arduino hardware connection
object

Arduino hardware connection created using arduino, specified as an object.

pin — Digital pin number
numeric

Digital pin number on the physical hardware, specified as a number.

mode — Digital pin mode
‘unset' (default) | string

Digital pin mode specified as a string. Valid pin modes are:

6-11

6 Functions — Alphabetical List

* input
+ output
* pullup
+ pwm

* servo
+ 12C

+ SPI

Pins are configured on first usage. You can rest the pin mode to change the mode. If you
want to use a pull up, you must set the mode to 'pullup’.

See Also

arduino | readDigitalPin | writeDigitalPin

6-12

demotor

dcmotor

Attach DC motor to Adafruit motor shield

Syntax

dcm = dcmotor(shield,motornum)
dcm dcmotor(shield,motornum,Name,Value)

Description

dcm = dcmotor(shield,motornum) attaches a DC motor to the specified port on an
Adafruit motor shield connected to an Arduino.

dcm = dcmotor(shield,motornum,Name,Value) attaches a DC motor with additional
options specified by one or more Name,Value pair arguments.

Examples

Create a DC Motor Connection on an Adafruit
Add a DC motor to an Adafruit motor shield connected to an Arduino hardware.

Connect to an Arduino hardware and create an add-on connection to an Adafruit shield.

a = arduino('COM7', 'Uno', 'Libraries', 'Adafruit\MotorShieldv2');
shield = addon(a, 'Adafruit/MotorShieldV2');

Create a DC motor connection to port 1 on the shield.

dcm dcmotor(dev, 1)

dcm
dcmotorv2 with properties:

MotorNumber: 1 (M1)
Pins: 'A4, A5'

6-13

6 Functions — Alphabetical List

Speed: 0.00
IsRunning: 0

Create a DC Motor Connection on an Adafruit and Specify Speed
Add a DC motor to an Adafruit motor shield connected to Arduino hardware.

Connect to Arduino hardware and create an add-on connection to an Adafruit shield.

a = arduino('COM7', 'Uno', 'Libraries', 'Adafruit\MotorShieldV2");
shield = addon(a, 'Adafruit/MotorShieldV2');

Create a DC motor connection to port 1 on the shield and set the speed to 0. 2.
dcm = dcmotor(dev,1, 'Speed',0.2)
dem =
dcmotorv2 with properties:
MotorNumber: 1 (M1)

Speed: 0.20
IsRunning: O

Input Arguments

shield — Add-on library connection
object

Add-on library connection created using addon, specified as an object.

motornum — Port number on shield
numeric

Motor number on the shield to connect the motor to, specified as a number. Valid
values are 1, 2, 3, and 4.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

6-14

demotor

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Valuel,...,NameN,ValueN.

Example: dcm = dcmotor(shield,1, 'Speed'0.2)

'speed' — DC motor speed
0 (default) | numeric

DC motor speed specified as a number between —1 and 1.

Example: dcm = dcmotor(shield,1, 'Speed'0.2) sets the speed of the DC motor
attached to port 1 on the motor shield to 0. 2.

Output Arguments

dcm — DC motor object
object

DC motor connection returned as an object.

See Also

addon | arduino | start | stop

6-15

6 Functions — Alphabetical List

6-16

i2cdev

Device connected on Arduino I12C bus

Syntax

dev = i2cdev(a,address,Name,Value)

Description

dev = i2cdev(a,address,Name,Value) creates an object that represents the
connection to the device connected to the I2C bus on the specified Arduino hardware a.

Examples

Create 12C device Connection

Create Arduino hardware object and scan for the I12C bus.

a = arduino('com9');
scanI2CBus(a)

ans =
"'0x61'

Use the address supplied to create an I12C device connection.

dev i2cdev(a, '0x61"))

dev =
i2cdev with properties:

Bus: O
Address: '0Ox61'
Pins: 'A4(SDA), A5(SCL)'
Create 12C device Connection with Additional Options

Create a connection and specify the bus number.

i2cdev

dev i2cdev(a, 'Ox61','bus',1)

dev =
i2cdev with properties:

Bus: 1

Address: 'Ox61'
Pins: 'A4(SDA), A5(SCL)'

Input Arguments

a — Arduino hardware connection
object

Arduino hardware connection created using arduino, specified as an object.

address — address of device connected to 12C bus
string

Address of device connected to the Arduino I12C bus, specified as a string. The address
string can be a hex or a scalar integer.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Valuetl,...,NameN,ValueN.

Example: dev = i2cdev(a, '0x71','bus',0)

'bus' — 12C device bus

0 (default) | numeric
I12C device bus specified as the comma-separated pair consisting of "bus" and a number.

If you are using an Arduino Due, use bus 0 to connect to SDA and SDI and bus 1 to
connect to SDal and SDI1.

Example: i2cdev = (a, 'Ox61', 'bus',1) creates a connection to the I12C bus 1.

6-17

6 Functions — Alphabetical List

6-18

Output Arguments

dev — 12C device connection
object

12C device connection, returned as an object.

See Also

Functions
arduino | scanI2Cbus | spidev

listArduinoLibrary

listArduinoLibraries

Display a list of installed Arduino libraries

Syntax

lib = listArduinoLibraries();

Description

lib = listArduinoLibraries() ; creates a list of available Arduino libraries and
saves the list to the variable 1ib.

Examples

List Arduino libraries
List libraries installed on your system.
1lib = listArduinoLibraries()
lib =
‘Adafruit/MotorShieldVv2'
'12C'

'SPI'
‘Servo'

Output Arguments

1ib — List of Arduino libraries
object

List of available Arduino libraries specified as an object or a cell array of strings.

6-19

6 Functions — Alphabetical List

See Also

arduino

6-20

move

move

Move stepper motor

Syntax

move (sm,steps)

Description
move (sm,steps) moves the stepper motor for the specified number of steps.

The move command blocks MATLAB while the stepper is being moved.

Examples

Move the stepper motor

Connect to Arduino hardware and create an add-on connection to an Adafruit shield.

a = arduino('COM7', 'Uno', 'Libraries', 'Adafruit\MotorShieldVv2");
shield = addon(a, 'Adafruit/MotorShieldV2')j;

Create a stepper object at port 1 with 200 steps per revolution and 10 RPMs.
sm = stepper(shield, 1,200, 'RPM',10);

Move the motor by 10 steps.

move(sm, 10);

The command now blocks MATLAB while the move executes.

Input Arguments

sm — Stepper motor object
object

6-21

6 Functions — Alphabetical List

Stepper motor connection specified as an object, created using stepper.

steps — Number of steps
number

Number of steps specified as a number that the stepper motor should move.

See Also

addon | arduino | release | stepper

6-22

playTone

playTone

Play tone on piezo speaker

Syntax

playTone(a,pin,frequency,duration)

Description

playTone(a,pin,frequency,duration) plays a tone on a piezo speaker attached to
the Arduino hardware at the specified pin and frequency for the specified duration.

Examples

Play a Tone on a Piezo Speaker

Play a tone connected to pin 5 on the Arduino for 30 seconds at 2400Hz.

a = arduino()
playTone(a,5,2400,30)

Input Arguments

a — Arduino hardware connection
object

Arduino hardware connection created using arduino, specified as an object.

pin — Digital pin number
numeric

Digital pin number on the physical hardware, specified as a number.

frequency — Frequency of tone
numeric

6-23

6 Functions — Alphabetical List

Frequency of tone to be played, specified as a number between the frequency range 0
and 32767Hz.

duration — Duration of tone
numeric

Duration of tone to be played specified as a number, which represents the number of
seconds. Valid values are between 0 and 30.

See Also

arduino

6-24

readDigitalPin

readDigitalPin

Read data from digital pin on Arduino hardware

Syntax

value = readDigitalPin(a,pin)

Description

value = readDigitalPin(a,pin) reads data from the specified pin on the Arduino
hardware in connection a.

Examples

Read the Value of a Digital Pin

Create a connection to Arduino hardware and read digital pin 13.

a = arduino()
readDigitalPin(a,13);

Input Arguments

a — Arduino hardware connection
object

Arduino hardware connection created using arduino, specified as an object.

pin — Digital pin number
numeric

Digital pin number on the physical hardware, specified as a number.

6-25

6 Functions — Alphabetical List

Output Arguments

value — value acquired from digital pin
logical

Value acquired from digital pin, returned as a logical value.

See Also

arduino | configureDigitalPin | writeDigitalPin

6-26

readVoltage

readVoltage

Read Arduino analog pin voltage

Syntax

voltage = readVoltage(a,pin)

Description

voltage = readVoltage(a,pin) reads the voltage on the specified analog input pins
on Arduino hardware.

Examples

Read Voltage from Analog Pin

Create an arduino object and read voltage from and analog input pin.

a = arduino;
readVoltage(a, 4)

ans =

2.1533

Input Arguments

a — Arduino hardware connection
object

Arduino hardware connection created using arduino, specified as an object.

pin — Analog pin number
numeric

6-27

6 Functions — Alphabetical List

Analog pin number on the physical hardware, specified as a number.

Output Arguments

voltage — Voltage read from analog pin
numeric

Voltage read from an analog pin on an Arduino hardware specified as a numeric double.

See Also

arduino | configureAnalogPin

6-28

readPosition

readPosition

Read servo motor position

Syntax

position = readPosition(s)

Description

position = readPosition(s) reads the shaft position as a ratio

of 1 to the maximum angle of the specified servo motor...

Examples

Read servo motor position

Create servo object.

a
S

arduino();
servo (a, 3);

Read the position of the servo.

postion = readPosition(s)
position =

0.5

Input Arguments

s — Servo object
object

Servo object connected to Arduino hardware specified as an object.

6-29

6 Functions — Alphabetical List

Output Arguments

position — Position of servo motor
numeric

Position of the servo motor specified as a number representing the angle from 0 to 1.

See Also

arduino | servo | writePosition

6-30

readRegister

readRegister

Read from 12C device register

Syntax

out = readRegister(dev,register,precision)

Description

out = readRegister(dev,register,precision) reads from the specified 12C
register with option precision parameters.

Examples

Read From I12C Device Register

Create an arduino object and attach an I2C device object to it.

a = arduini();
dev = i2cdev(a, 'Ox61');

Read from register at address 20.
value = readRegister(dev,'20');
Specify Precision To Read from 12C Register

Create an arduino object and attach an I2C device object to it.

a = arduino();
dev = i2cdev(a, 'Ox61');

Read from register at address 20 with precision of uint16.

6-31

6 Functions — Alphabetical List

6-32

value = readRegister(dev,'20','uinti6');

Input Arguments

dev — I12C device connection
object

I12C device connection represented as an object.

register — Address of register on 12C device
double | string

Address of the register on the I12C device specified as a double or a string. The value must
match the address specified in the I2C device data sheet.

precision — Data precision
| string

Data precision, specified as a string. Match the data precision to the size of the register
on the device. Data precision defaults to uint8 and you can set it to:

Data Types: uint8 | uinti16

Output Arguments

out — Value of data
numeric

Value of data stored at register, returned as a numeric array.

See Also

arduino | i2cdev | writeRegister

release

release

Release stepper motor

Syntax

release(sm)

Description

release(sm) release the stepper motor allowing it to move freely.

Examples

Release the stepper motor

Connect to Arduino hardware and create an add-on connection to an Adafruit shield.

a = arduino('COM7', 'Uno', 'Libraries', 'Adafruit\MotorShieldVv2');
shield = addon(a, 'Adafruit/MotorShieldv2');

Create a stepper object at port 1 with 200 steps per revolution and 10 RPMs.
sm = stepper(shield, 1,200, 'RPM',10);
Move the motor by 10 steps and release it.

move(sm, 10);
release(sm);

Input Arguments

sm — Stepper motor object
object

Stepper motor connection specified as an object, created using stepper.

6-33

6 Functions — Alphabetical List

See Also

addon | arduino | stepper

6-34

scanl2CBus

scanl2CBus

Scan Arduino device for I12C bus address

Syntax
addr = scanI2CBus(a)
addr = scanI2CBus(a, Name, Value)

Description

addr = scanI2CBus(a) scans the Arduino device in object a and stores it in the
variable addr.

addr = scanI2CBus(a, Name, Value) scans a specific bus. For Name, enter 'bus'.
For Value, enter 0 or 1. If using SDA1 and SCL1 pins on Due board, set it to 1.

Examples

Scan for 12C bus on an Arduino device

a = arduino('com9');
scanI2CBus(a)

ans =
'0x48'

Input Arguments

a — Arduino device connection
object Arduino device connection created using arduino, specified as an object.

Output Arguments

addr — 12C bus address
string 6-35

6 Functions — Alphabetical List

I12C bus address represented as a string or a cell array of strings.

6-36

servo

servo

Create connection servo motor

Syntax

s = servo(a, pin)
s = servo(a, pin,Name,Value)
Description

s = servo(a, pin) creates a servo motor object connected to the specified pin on the
Arduino hardware a.

s = servo(a, pin,Name,Value) creates a servo motor object with additional options
specified by one or more Name,Value pair arguments.

Examples

Create a Servo Object
Create a servo object using pin 3.

Create an arduino object and attach the servo object to pin 3.

a = arduino()
S servo(a,3)

Servo with properties:
Pins: 4
MinPulseDuration: 5.44e-04 (s)
MaxPulseDuration: 2.40e-03 (s)
Specify Minimum and Maximum Pulse Duration for a Servo

Set the minimum duration to 7e-4 and maximum to 2.3e-3 seconds.

6-37

6 Functions — Alphabetical List

6-38

Create an arduino object and attach the servo object to pin 3 and specify

a = arduino()
servo(a,3, 'MinPulseDuration', 7.00e-4, 'MaxPulseDuration',2.3e-3)

(7]
I}

Servo with properties:

Pins: 3
MinPulseDuration: 7.00e-04 (s)
MaxPulseDuration: 2.30e-03 (s)

Input Arguments

a — Arduino hardware connection
object

Arduino hardware connection created using arduino, specified as an object.

pin — Digital pin number
numeric

Digital pin number on the Arduino board, specified as a number.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namei1,Valuel,...,NameN,ValueN.

Example: s= servo(a,7, ‘MaxPulseDuration’, 2e-3, ‘MinPulseDuration’, 1e-3);

'MinPulseDuration' — Pulse duration of servo
5.44e-4 seconds (default) | numeric

The minimum pulse duration specified as a numeric number in seconds and is equal to the
width of the pulse required to put the motor at its minimum angle. Refer to the device
datasheet for correct values.

servo

'MaxPulseDuration' — Pulse duration of servo
2.4e-3 seconds (default) | numeric

The maximum pulse duration specified as a numeric number in seconds and is equal to the
width of the pulse required to put the motor at its maximum angle. Refer to the device

datasheet for correct values.

Output Arguments

s — Servo object
object

Servo object returned as an object.

See Also

arduino | readPosition | writePosition

6-39

6 Functions — Alphabetical List

servo

Create add-on servo motor connection

Syntax

s = servo(shield, motornum)

Description

s = servo(shield, motornum) creates a servo motor object on the specified add-on
shield motor number.

Examples

Create a Servo Motor Object Using an Add-On Library

Create an arduino object and load the Adafruit library.

a = arduino('com9','Uno', 'libraries', 'Adafruit\Motorshieldv2");

Create the add-on library object.

shield = addon(a, ‘Adafruit\MotorshieldV2’);
Attach a servo to the add-on shield.

s = servo(shield,1);

Input Arguments
shield — Add-on library connection
object

Add-on library connection created using addon, specified as an object.

6-40

servo

motornum — Servo motor number
numeric

Servo motor number specified as a number. Valid values are 1 and 2. Motor number 1

uses digital pin 10 on the Arduino board. Motor number 2 uses digital pin 9.

Output Arguments

s — Servo object
object

Servo object returned as an object.

See Also

addon | arduino

6-41

6 Functions — Alphabetical List

6-42

spidev

Connect to SPI device

Syntax

dev = spidev(a,cspin)
dev = spidev(a,cspin,Name,Value)

Description

dev = spidev(a,cspin) creates a connection to the SPI device on the specified
Arduino board and chip select pin.

dev = spidev(a,cspin,Name,Value) creates a connection to the SPI device with
additional options specified by one or more Name,Value pair arguments.

Examples

Create SPI Connection to an Arduino Board at CS Pin 4

Create an Arduino connection and connect it to an SPI device

a = arduino(‘com9’);
dev = spidev(a, 4);

Create an SPI Connection with Communication Mode and Bit Order Parameters

Set the communication mode to 3 and the bit order to 1sbfirst.

a = arduino(‘com9’);
dev = spidev(a, 4, ‘spimode’, 3, ‘bitorder’, f‘lsbfirst’);

spidev

Input Arguments

a — Arduino hardware connection
object

Arduino hardware connection created using arduino, specified as an object.

cspin — Chip select pin number
numeric

Chip select pin number to used to communicate with the SPI device.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Valuetl,...,NameN,ValueN.

Example: dev = spidev(a, 4, 'spimode', 3, 'bitorder',
‘1sbfirst', 'mode',3);

'bitorder' — SPI communication bit order
msbfirst (default) | string

SPI communication bit order specified as a string. Possible values are:

* 'msbfirst’', where the most significant bit is in the first column.

+ '1lsbfirst, where the least significant bit is in the first column.

'mode’' — SPI communication mode
numeric

SPI communication mode specifying clock polarity and phase, specified as the comma-
separated pair consisting of 'mode' and an number with a value between 0 and 3.

Output Arguments

dev — SPI device connection
object

6-43

6 Functions — Alphabetical List

SPI device connection returned as an object.

See Also

arduino | i2cdev

6-44

start

start

Start DC motor

Syntax

start(dcm)

Description

start(dcm) starts the configured DC motor.

Examples

Start a DC motor

Add a DC motor to an Adafruit motor shield connected to Arduino hardware and start
the motor.

Connect to Arduino hardware and create an add-on connection to an Adafruit shield.

a = arduino('COM7', 'Uno', 'Libraries', 'Adafruit\MotorShieldv2');
shield = addon(a, 'Adafruit/MotorShieldV2');

Create a DC motor connection to port 1 on the shield.

dcm dcmotor(shield, 1)

dcm
dcmotorv2 with properties:
MotorNumber: 1 (M1)
Speed: 0.00

IsRunning: 0

Change the speed to 0.2, start the DC motor and display the motor object.

6-45

6 Functions — Alphabetical List

dcm.Speed = 0.2
start(dcm)
dcm

dcm =
dcmotorv2 with properties:
MotorNumber: 1 (M1)

Speed: 0.20
IsRunning: 1

Input Arguments

dcm — DC motor object
object

DC motor connection specified as an object, created using dcmotor.

See Also

dcmotor | stop

6-46

stepper

stepper

Attach stepper motor to Adafruit motor shield

Syntax

sm = stepper(shield,motornum,sprev)
sm = stepper(shield,motornum,sprev,Name,Value)

Description

sm = stepper(shield,motornum,sprev) creates a stepper motor object connected to
the specified port on the Adafruit motor shield on the specified motor num on the shield with
specified steps per revolution.

sm = stepper(shield,motornum,sprev,Name,Value) creates a stepper motor object
with additional options specified by one or more Name-Value pair arguments.

Examples

Create a stepper object
Specify a port and steps per revolution.

Connect to Arduino hardware and create an add-on connection to an Adafruit shield.

a = arduino('COM7', 'Uno', 'Libraries', 'Adafruit\MotorShieldv2');
shield = addon(a, 'Adafruit/MotorShieldV2');

Create a stepper motor connection to a motor number 1 on the shield, with an RPM of 10.

sm stepper(dev,1,200, 'RPM',10)

sm
stepper with properties:

MotorNumber: 1

6-47

6 Functions — Alphabetical List

Pins: 'A4, A5'
StepsPerRevolution: 200
RPM: 10
StepType: Single ('Single', 'Double', 'Interleave', 'Microstep')
Create a stepper object and define RPM and step type
Specify RPM and step type option name value pairs.

Connect to Arduino hardware and create an add-on connection to an Adafruit shield.

a = arduino('COM7', 'Uno', 'Libraries', 'Adafruit\MotorShieldVv2');
shield = addon(a, 'Adafruit/MotorShieldV2');

Create a stepper motor connection to port 1 on the shield, with an RPM of 10..

sm stepper(shield, 1,200, 'RPM',10, 'stepType', 'interleave')

sm
stepper with properties:
MotorNumber: 1

StepsPerRevolution: 200

RPM: 10
StepType: Interleave ('Single', 'Double', 'Interleave', 'Microstep')

Input Arguments

shield — Add-on library connection
object

Add-on library connection created using addon, specified as an object.

00000000 — D000 number on shield

numeric

Motor number on the shield to connect the motor to, specified as a number. Valid
values are 1 and 2. If using M1 and M2 on the shield, set motor number to 1.

If using M3 and M4, set motor number to 2

sprev — Steps per revolution
numeric

6-48

stepper

Steps per revolutions of the stepper motor, specified as a number.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namei1,Valuel,...,NameN,ValueN.

Example: sm = stepper(shield,1,200, 'RPM',10, 'stepType', 'interleave')

"RPM' — Revolutions per minute
0 (default) | numeric

Revolutions per minute specified as a number. RPM determines the speed of the motor.

Example: sm = stepper(shield,1,'RPM',10) creates a stepper with an RPM of 10.

'StepType' — Coil activation type
single (default) | string

Coil activation type specified as a string. Valid types include:

*Single
*Double
* Interleave

* Microstep

Example: sm = stepper(shield, 1,200, 'stepType', 'interleave') creates a
stepper with an interleaved step type.

Output Arguments

sm — Stepper motor object
object

Stepper motor connection returned as an object.

See Also

addon | arduino | move | release

6-49

6 Functions — Alphabetical List

6-50

stop

Stop DC motor

Syntax

stop(dcm)

Description

stop(dcm) stops the specified DC motor.

Examples

Stop a DC motor

Add a DC motor to an Adafruit motor shield connected to Arduino hardware. Start and
stop the motor.

Connect to Arduino hardware and create an add-on connection to an Adafruit shield.

a = arduino('COM7', 'Uno', 'Libraries', 'Adafruit\MotorShieldv2');
shield = addon(a, 'Adafruit/MotorShieldV2');

Create a DC motor connection to port 1 on the shield.

dcm = dcmotor(shield, 1);

Change the speed to 0.2, start the DC motor and display the motor object.
dcm.Speed = 0.2

start(dcm)

dcm

dcm =

dcmotorv2 with properties:

stop

MotorNumber: 1 (M1)
Speed: 0.20
IsRunning: 1

Stop the motor and display the object.

stop(dcmotor);
dcm

dcm =
dcmotorv2 with properties:
MotorNumber: 1 (M1)

Speed: 0.20
IsRunning: O

Input Arguments

dcm — DC motor object
object

DC motor connection specified as an object, created using dcmotor.

See Also

arduino | decmotor | start

6-51

6 Functions — Alphabetical List

writePosition

Write position of servo motor

Syntax

writePosition(s,position)

Description

writePosition(s,position) writes the specified value to the specified servo on the
Arduino hardware.

Examples

Set Servo Motor Position

Create servo object.

a
S

arduino();
servo (a, 3);

Rotate the motor to its mid-position.
writePosition(s, 0.5)

Input Arguments

s — Servo object
object

Servo object connected to an Arduino device specified as an object.

position — Position of shaft
numeric

6-52

writePosition

Position of servo motor shaft specified as a number representing the angle from 0 to 1.

See Also

arduino | readPosition | servo

6-53

6 Functions — Alphabetical List

writePWMDutyCycle

Set digital pin PWM duty cycle

Syntax

writePWMDutyCycle(a, pin, dutyCycle)

Description

writePWMDutyCycle(a, pin, dutyCycle) sets the PWM duty cycleon a digital pin
specified for the Arduino hardware a.

Examples
Specify the DutyCycle of Digital Pin
Specify a 0.33 duty cycle for an LED attached to digital pin 7 on Arduino hardware.

a = arduino();
writePWMDutyCycle(a,7,0.33);

Input Arguments

a — Arduino hardware connection
object

Arduino hardware connection created using arduino, specified as an object.

pin — Digital pin number
numeric

Digital pin number on the physical hardware, specified as a number.

dutyCycle — Value of the digital pin duty cycle

numeric

6-54

writePWMDutyCycle

Value of digital pin’s PWM duty cycle specified as number between 0 and 1.

See Also

arduino | writePWMVoltage

6-55

6 Functions — Alphabetical List

writePWMVoltage

Write digital pin PWM voltage value

Syntax

writePWMVoltage(a, pin, voltage)

Description

writePWMVoltage(a, pin, voltage) writes the specified voltage value to the PWM
pin on the Arduino hardware.

Examples

Specify the Voltage of Digital Pin
Specify digital pin 7 on Arduino hardware to have 3 volts.

a = arduino();
writePWMVoltage(a,7,3);

Input Arguments

a — Arduino hardware connection
object

Arduino hardware connection created using arduino, specified as an object.

pin — Digital pin number
numeric

Digital pin number on the physical hardware, specified as a number.

voltage — Voltage of the digital pin

numeric

6-56

writePWMVoltage

Voltage of digital pin’'s PWM specified as number between 0 and 5 volts. Check your
hardware data sheet for accepted voltage ranges. For example, Arduio Uno accepts 0 — 5
V and Arduino Due accepts 0 — 3.3 V.

See Also
arduino | writePWMDutyCycle

6-57

6 Functions — Alphabetical List

write

Write data to I2C bus

Syntax

write(dev,value,precision)

Description

write(dev,value,precision) writes the specified data to the I12C bus.

Examples

Write data to an 12C device on an Arduino
Create a connection to an I2C device on an Arduino.

a = arduino();
dev = i2cdev(a, 7);

Write data and read it back

write(dev,dataln)

Input Arguments

dev — 12C device connection
object

I2C device connection represented as an object.

value — Data to write to 12C device
numeric array

Data to write to I2C device specified as a double. Write the data to the device before you
can read it.
precision - Data precision to be write to the I2C device Valid values are 'uint8' and 'uint16'.

6-58

writeDigitalPin

writeDigitalPin

Write to digital pin on Arduino hardware

Syntax

writeDigitalPin(a,pin,value)

Description

writeDigitalPin(a,pin,value) writes the specified value to the specified pin on
the Arduino hardware in the connection a.

Examples

Write to Digital Pin

Write a value to digital pin 7 with an LED to turn it on.

a = arduino();
writeDigitalPin(a, 7, 1);

Input Arguments

a — Arduino hardware connection
object

Arduino hardware connection created using arduino, specified as an object.

pin — Digital pin number
numeric

Digital pin number on the hardware, specified as a number.
value — Value of the digital data

logical

6-59

6 Functions — Alphabetical List

Value of digital data to write to the specified pin on a hardware, specified as a logical
value of 0 and 1 or true and false.

See Also

arduino | configureDigitalPin | readDigitalPin

6-60

writeRead

writeRead

Read and write data from SPI sensor

Syntax

dataOut = writeRead(dev,dataIn,precision)

Description

dataOut = writeRead(dev,dataln,precision) reads the specified data, written to
the SPI device as dataln.

Examples

Read and Write Data from an SPI Device on an Arduino Board

Create a connection to an SPI device on an Arduino board.

a = arduino();
dev = spidev(a, 7);

Write data and read data.

dataIn = [2 0 0 255];
dataOut = writeRead(dev,dataIn);

Input Arguments

dev — SPI device connection
object

SPI device connection represented as an object.
dataIn — Data to write to SPI device

numeric array

6-61

6 Functions — Alphabetical List

Data to write to SPI device specified as a numeric array. Write the data to the device
before you read it.

precision — Data precision
string

Data precision, specified as a string. Match the data precision to the size of the register
on the device. Data precision defaults to uint8 and you can set it to:

Data Types: uint8 | uinti16

Output Arguments

dataOut — Data read from SPI device
numeric

Data read from SPI device returned as a numeric array.

See Also

arduino | spidev

6-62

Troubleshooting

+ “Cannot Auto Detect Arduino hardware” on page 7-2

* “Why do I need to specify board type and port?” on page 7-3
+ “My I2C server code hangs” on page 7-5

* “I'lost my Arduino connection” on page 7-6

* “Pin is Not Receiving Data” on page 7-7

+ “I see strange data” on page 7-8

* “Problems using pulse duration setting on Servo” on page 7-9
+ “My Servo Pulse is Not Working” on page 7-10

+ “Hardware reserved error” on page 7-11

+ “Cannot stack motor shields” on page 7-12

+ “My Stepper is Not Rotating” on page 7-13

+ “My Motor is Not Working” on page 7-14

* “I Need More Help” on page 7-15

7 Troubleshooting

Cannot Auto Detect Arduino hardware

If you are using an official Arduino hardware, MATLAB should auto detect the port

connected to the hardware on both Windows® and Macintosh systems. If you cannot
connect to an official hardware on Windows, you may need to update the hardware
driver.

Update Device Driver on a Windows System

1 Open Device Manager and expand the Ports (COM & LPT) list.

2 Right click on the port that your device is connected to and select Update Drive
Software.

El ? Ports (COM &LPT)

. Communications Paort (COM
i =" USB Serial Port (COM3)

D Processors

! _&b' Security Devices

---J.,; Sound, video and game controll Sean for hardware changes
=45 Storage controllers
- € LSI Adapter, Ultra320 scs] _ Properties

rl =Bl Cumbeen dmvsiene

Update Driver Software...
Dizable
Uninstall

3 Select 'Browse my computer for driver software'.

4 Specify the location where the MATLAB Support Package for Arduino Hardware is installed.

Unsupported Device

Check the Supported Device page on the MathWorks® Web site to ensure that the
Arduino device you are using is supported.

Manual disconnect

If you have manually disconnected the board and reconnected, you must clear the
arduino object from the MATLAB workspace before you reconnect.

7-2

http://www.mathworks.com/hardware-support/arduino-matlab.html

Why do | need to specify board type and port?

Why do | need to specify board type and port?

Unofficial Arduino devices, are not automatically recognized and you must specify port
and board type to create connection. For a list devices, see the Supported Device page on
the MathWorks Web site: http://www.mathworks.com/hardware-support/arduino-matlab.html

After you plug your Arduino hardware, you can find the port number on your system.

Find port number on Windows

1 Open Device Manager and expand the Ports (COM & LPT) list.
2 Note the number on the USB Serial Port.

LF CAN Hardware (Kvaser)

(-8 Computer

,‘_,J Dizk drives

B Display adapters

A8 DVD/CD-ROM drives

--::Q Floppy drive controllers

l:igu Human Interface Devices

g IDE ATA/ATAPI contrallers
_ Keyboards

jﬂ Mice and other pointing devices
(Bl Monitors

E" Metwork adapters

[-E Portable Devices

=75 Ports (COM &LPT)

e ? Communications Part {COM1)
L. ? LISE Serial Port (COM3)
D Processors

_/‘b' Security Devices

""‘Ii Sound, video and game controllers
E‘""‘} Storage controllers

I £ LSI Adapter, Ultra320 SCSI 2000 series, w/1020/1030
---_'l,-' System devices

h Universal Serial Bus contrallers

7-3

http://www.mathworks.com/hardware-support/arduino-matlab.html

7 Troub|eshooting

Find port number on Macintosh

1 Open a Mac Terminal and type:

'ls /dev/*'

2 Note the port number listed for tty.usbmodem* or tty.usbserial*. The port
number is represented with * here.

7-4

My 12C server code hangs

My 12C server code hangs

Check the power line and make sure it is still connected. With 12C devices, the server
code can stop working if the power line is disconnected.

7-5

7 Troubleshooting

| lost my Arduino connection

7-6

Unplugged hardware

This is the most common cause of a lost connection. Check your wires and make sure it is
still plugged in.

Board with low data memory

If your Arduino has very low data memory, you may lose connection while working large
data sets. If this occurs you can delete all libraries you are not using from the board and
free up some space.

Too many device objects

If you have configured too many device objects on your Arduino, it may use up memory
resources and cause a lost connection. Clear all objects. Then, recreate the arduino object
and create fewer peripheral devices.

Pin is Not Receiving Data

Pin is Not Receiving Data

Make sure devices that have floating or high impedence have proper pull up or pull down
resistors.

7-7

7 Troub|eshooting

| see strange data

Pin not receiving proper signal

Make sure your pins is properly configured. For example, a pull up or a pull down is being
used for read or write.

Board with low data memory

If your Arduino has very low data memory, you may see strange data. If this occurs you
can delete all libraries you are not using from the board and free up some space.

Incorrect input or output

You can get incorrect readings if you are using the wrong pin. For example if you are
writing to a pin configured as input or pullup.

7-8

Problems using pulse duration setting on Servo

Problems using pulse duration setting on Servo

You can get errors if the pulse duration settings on a Servo are incorrect. Minimum
and maximum pulse duration values must be set correctly. Refer to you Servo device
specification for appropriate values.

7-9

7 Troub|eshooting

My Servo Pulse is Not Working

Refer to you Servo Motor data sheet for pulse duration values and calibrate accordingly.

7-10

Hardware reserved error

Hardware reserved error

You may get a hardware reserved error if there is a conflict between analog input and
12C for pins 4 and 5. The hardware is reserved by whichever operation occurs first.
Use configureDigitalPin or configureAnalogPin to reconfigure the pin to a different mode.

7-11

7 Troubleshooting

Cannot stack motor shields

If you are using an Arduino Due board, you cannot stack multiple motor shields. To be
able to stack shields, use Uno or any other supported Arduino hardware.

7-12

My Stepper is Not Rotating

My Stepper is Not Rotating

Your device may not have enough power. Check the motor's operating voltage and make

sure that you have enough power to the device. Then, re-power the device and try again.

7-13

7 Troubleshooting

My Motor is Not Working

* Check to see if your device has enough power.
* Check to see if the jumper is missing.

+ Make sure the device voltage range requirements are met. For example, an Arduino
Due board only supports voltage range 0 to 3.3V.

* Refer to the Adafruit FAQ page for more troubleshooting tips at

https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/faq

7-14

https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/faq

| Need More Help

| Need More Help

Create a trace file by specifying the TraceOn to true when creating arduino obejct.
Then, rerun your code and inspect commands being executed on Arduino hardware.

Please have the full trace when contacting MathWorks to report an issue.

For example:

a = arduino('com3','Uno','TraceOn’, true)

7-15

Examples

8/25/2014 Getting Started with MATLAB Support Package for Arduino Hardware

Getting Started with MATLAB Support Package for Arduino Hardware

This example shows how to use MATLAB® Support Package for Arduino® Hardware to perform basic operations on the
hardware such as turning an LED on and off, blinking LEDs and playing sound on a speaker.

Contents
= Hardware setup
= Create an arduino object
= Turn LED on and off
= Brighten and dim LED
= Control an LED using a potentiometer
= Control a Piezo speaker using a push button

= Cleanup

Hardware setup

= Connectan LED to digital pin 11 on the Arduino hardware through a 1KOhm resistor.

file://mathworks/Public/menghan_jin/ForPallavi/ArduinoGetting StartedExample.html 1/6

8/25/2014

Getting Started with MATLAB Support Package for Arduino Hardware

LE N NN NN NN NNENRENNENNNNNENNENNNENNNNNHNNRNSNHJN.]
LA N N N NN NN NN NENNENNNENRENNENRHNENESHNSHNHSESNHNHNNS.HN)
LE N NN NN NN NNENRENNENNNNNENNENNNENNNNNHNNRNSNHJN.]
LA N N N NN NN NENENNENNENENNENDNENNNEHNNENHNSNHNHNHNSNDLJ.]
LA N N N NN NN NN NENNENNNENRENNENRHNENESHNSHNHSESNHNHNNS.HN)
| |
a8 LN N NN LN N NN LN N NN aeEeeR
" L B NN L N NN L N NN L B NN L B NN n

Create an arduino object

a = arduino();

If you have more than one Arduino board connected, specify the port and board type.

a = arduino('com23', 'uno');

Turn LED on and off

Write value 1 or true to digital pin 13 turns on the built-in LED and write a value of 0 or false turns it off. Execute the
following command at the MATLAB prompt to turn the LED off and on.

writeDigitalPin(a, 13, 0);
pause (2) ;

writeDigitalPin (a,

13,

1);

file://mathworks/Public/meng han_jin/F or Pallavi/ArduinoGetting StartedExample.html

2/6

8/25/2014 Getting Started with MATLAB Support Package for Arduino Hardware

Configure the LED to blink at a period of 1 second.

for i = 1:10
writeDigitalPin(a, 13, 0);
pause (0.5) ;
writeDigitalPin(a, 13, 1);
pause (0.5) ;

end

Brighten and dim LED

Send pulse signals of specified width to the PWM pins on the Arduino hardware. PWM signals can light up LEDs
connected to the pin. The duty cycle of the pulse controlls the brightness of the LED. Calculate the amount that the LED
brightens and dims by dividing the maxand min duty cycle for the pin by the number of iterations.

brightness step = (1-0)/20;

for 1 = 1:20
writePWMDutyCycle(a, 11, i*brightness step);
pause (0.1);

end

for 1 = 1:20
writePWMDutyCycle(a, 11, l-i*brightness step);
pause (0.1);

end

You can also brighten and dim the lights by changing the voltage of the PWM signal. Calculate the amount that the LED
brightens and dims by dividing the maxand min voltage for the pin by the number of iterations.

brightness step = (5-0)/20;

for 1 = 1:20
writePWMVoltage(a, 11, i*brightness step);
pause (0.1);

end

for i = 1:20
writePWMVoltage(a, 11, 5-i*brightness step);
pause (0.1);

end

Control an LED using a potentiometer

The potentiometer changes the voltage value read from analog pin 0 which can be used to set the woltage level on the
PWM pin to control the brightness of the LED connected. Connect a potentiometer to Arduino hardware with the middle
leg connected to analog pin 0 and the other two connected to 5V and GND.

file://mathworks/Public/menghan_jin/ForPallavi/ArduinoGetting StartedExample.html 3/6

8/25/2014 Getting Started with MATLAB Support Package for Arduino Hardware

LE N NN NN NN NNENRENNENNNNNENNENNNENNNNNHNNRNSNHJN.]
LA N N N NN NN NN NENNENNNENRENNENRHNENESHNSHNHSESNHNHNNS.HN)
LE N NN NN NN NNENRENNENNNNNENNENNNENNNNNHNNRNSNHJN.]
LA N N N NN NN NENENNENNENENNENDNENNNEHNNENHNSNHNHNHNSNDLJ.]
LA N N N NN NN NN NENNENNNENRENNENRHNENESHNSHNHSESNHNHNNS.HN)
| |
a8 LN N NN LN N NN LN N NN aeEeeR
" L B NN L N NN L N NN L B NN L B NN n

time = 200;

while time > 0
voltage = readVoltage(a, 0);
writePWMVoltage (a, 11, voltage);

time = time - 1;

pause (0.1);
end

While the code is running, you can rotate the knob on the potentiometer to see how it affects the brightness of the LED.

Control a Piezo speaker using a push button

This part of the example shows how to play a tone controlled by a push button connected to a digital pin on the Arduino
hardware. You can also configure a digital pin to pul lup mode and use the built-in pullup resistor.

file://mathworks/Public/meng han_jin/F or Pallavi/ArduinoGetting StartedExample.html 4/6

8/25/2014

Getting Started with MATLAB Support Package for Arduino Hardware

1) Connect a Piezo speaker to digital pin 11.

2) Connect a push button to digital pin 12.

*e *e * e L N N N
- e LN N NN L N N N
+ +
L N N s RO ERRERRED
L N N (LR N NN NN NN NN NN
L N N s RO ERRERRED
L N s ORERRRRRRED
L N N (LR N NN NN NN NN NN
* e L N N s RRRRERRRRRRRRRD
LA N NN NN NN LA R N NN NN NN NN NN NN NN
s ERRER DR RERRRR DR RRRED
s ERERRERRRRRRRRRRRERRRR R R
A N N NN NN RN NN N NN NN NN NNENNNENNN.]
1 1
L N N N LA N N N LA N N N L. N NN L N N N
L N N N LN N NN LN N NN LN N NN L N N N

+

To play a tone on the speaker, you can use playTone method to specify the frequency and duration of the sound. Second,
the status of a push button can be detected by reading the connected digital pin's value. In order for the push button to
work, a pullup resistor needs to be connected to the corresponding digital pin on Arduino board. You can use the built-in
pullup resistor by configuring the digital pin mode to pullup to enable it. If the button has been pushed, meaning the
read back value is 0, a beep sound is played on the speaker. Execute the following command at the MATLAB prompt to

play a sound on the speaker when push button is pressed down.

configureDigitalPin (
time = 200;
while time > O
speaker status =
if speaker status
playTone(a, 1

ar

12, 'pullup');

readDigitalPin(a, 12);

1,

1200, 1);

file://mathworks/Public/menghan_jin/ForPallavi/ArduinoGetting StartedExample.html

5/6

8/25/2014 Getting Started with MATLAB Support Package for Arduino Hardware

else
% Change duration to zero to mute the speaker
playTone(a, 11, 1200, 0);

end
time = time - 1;

pause (0.1);
end

Clean up

Once the connection is no longer needed, clear the arduino object.

clear a

Copyright 2014 The MathWorks, Inc.
Published with MATLAB® R2015a

file://mathworks/Public/menghan_jin/ForPallavi/ArduinoGetting StartedExample.html 6/6

http://www.mathworks.com/products/matlab/

8/25/2014 Measure Temperature From I2C Device on Arduino® Hardware

Measure Temperature From I2C Device on Arduino® Hardware

This example shows how to use the MATLAB® Support Package for Arduino® Hardware and the 12C interface to
communicate with I12C devices.

Contents

= QOverview of TMP102 temperature sensor

= Hardware setup

= Create an I2C device object

= Read temperature value

= Read temperature with higher measurement limit

= Clean up

Overview of TMP102 temperature sensor

This example uses TMP102, a two-wire serial output digital sensor, which can read temperature up to a resolution of
0.0625 degree in Celsius. You can also read data from the device in Extended mode with higher measurement limit.

Hardware setup

1) Connect the SDA, SCL, GND and V+ pins of the sensor to the corresponding pins on Arduino hardware. This
examples connects SDAand SCL pins to A4 and A5 on Arduino Uno board. If you are using a different board, check the
correct pins before connection.

2) Securely connect the power line of the 12C sensor.

file://mathworks/Public/menghan_jin/ForPallavi/I2CTemperatureSensor Example.html 1/4

8/25/2014

Measure Temperature From I2C Device on Arduino® Hardware

aee LN N B L N] L] aee
" LN L N NN L L] LN
LA N NN NN NN ae LN N NN NN NN NN NN
LA N N N NN NN .e LN N NN N NN NN NN N
LA N NN NN NN ae LN N NN NN NN NN NN
LA N N N NN NN .e LN N NN N NN NN NN N
LA N N N NN NN .e LA N NN NN NN NN NN
LR N NN NN NN NN NN LN N NN NN NN NN NN
LA NN NN NN NN NN LA N NN NN NN NN NN
LR N NN NN NN NN NN LN N NN NN NN NN NN
LA N NN NN N NN NN LN N NN N NN NN NN N
LA N N N NN NN NN NENNENNNENRENNENRHNENESHNSHNHSESNHNHNNS.HN)
|

a8 LN N NN LN N NN LN N NN aeEeeR
" L B NN L N NN L N NN L B NN L B NN

Create an 12C device object

1) Create an arduino object and include the 12C library.

a = arduino();

Or, you can explicitly specifyitin the Libraries Name-Value pair at creation of arduino object.

a = arduino('com22', 'uno',

2) Scan for available 12C addresses.

addrs = scanI2CBus (a)

'Libraries', 'I2C');

file://mathworks/Public/menghan_jin/ForPallavi/I2CTemperatureSensor Example.html

2/4

8/25/2014 Measure Temperature From I2C Device on Arduino® Hardware

addrs =

'0x48"
'0x60"

Note the address of the temperature sensor. You will use it to create the 12C device object.

3) Create the 12C device object

tmpl02 = i2cdev(a, '0x48")

tmpl02 =
i2cdev with properties:

Pins: A4 (SDA), A5 (SCL)
Bus: 0
Address: 72 (0x48)

The bus defaults to 0. If you are using the dedicated 12C interfaces(SDA1, SCL1) on Due board, for example, make sure
to setbusto 1.

Read temperature value
The sensor's temperature reading is digitized into 12 bits in Normal mode with 8 bits in MSB and 4 bits in LSB. Each

LSB equals 0.0625 degrees in Celsius. Write the register address to read from first and then read two bytes of data from
it. Use uint8 data type.

write (tmpl02, 0, 'uint8');
data = read(tmpl02, 2, 'uint8'");

temperature = (double(bitshift(intl6(data(l)), 4)) + double(bitshift(intl6(data(2)), -4)))
* 0.0625

temperature =

23.1875

Read temperature with higher measurement limit

With the TMP102 sensor's extended mode, you can measure temperature above 128 degrees by using 13 bits. To do
s0, you need to write value '60B0' in hexto configuration register ataddress 1.

writeRegister (tmpl02, 1, hex2dec('60B0'), 'uintle');

file://mathworks/Public/menghan_jin/ForPallavi/I2CTemperatureSensor Example.html 3/4

8/25/2014 Measure Temperature From I2C Device on Arduino® Hardware

Read the temperature from the register to get a more precise result. The TMP102's conversion rate defaults to 4Hz
Hence, pause MATLAB for about 0.25s before each reading.

pause (0.25) ;
data = readRegister (tmpl02, 0, 'uintle');
temperature = double (bitshift (bitand(data, hex2dec('FFF8')), -3)) * 0.0625

temperature =

23.1875

To change back the default configuration, type

writeRegister (tmpl02, 1, hex2dec('60A0'), 'uintle');

Clean up

Once the connection is no longer needed, clear the associate object.

clear tmpl02 a

Copyright 2014 The MathWorks, Inc.
Published with MATLAB® R2015a

file://mathworks/Public/menghan_jin/ForPallavi/I2C TemperatureSensor Example.html 4/4

http://www.mathworks.com/products/matlab/

8/25/2014 Communicate with SPI Device on Arduino® Hardware

Communicate with SPI Device on Arduino® Hardware

This example shows how to use the MATLAB® Support Package for Arduino® Hardware to use SPI interface to
communicate with MCP42010 Digital Potentiometer.

Contents

= Overview of MCP42010 Digital Potentiometer
= Hardware setup
= Control the digital potentiometer

= Clean up

Overview of MCP42010 Digital Potentiometer
The MCP42010 device is a 256-position 10KOhm potentiometer SPI device with two independent channels.

It has channel 1 on pin 5(PB1), 6(PW1) and 7(PA1), and also channel 0 on pin 10(PB0), 9(PWO0), 8(PA0). Pin 6 and pin 9
are wiper pins. This example uses CS, SCK, SI, SO, VDD, VSS, PB1, PW1 and PA1.

Hardware setup

1) Connectthe SI, SO, SCK, CS, VDD and VSS pins of a MCP42010 10KOhm digital potentiometer to the Arduino
hardware. This example uses an Arduino Uno board with the following connection.

= SI(MOSI) - digital pin 11
= SO(MISO) - digital pin 12
= SCK-digital pin 13

= CS -digital pin 10

= VDD -5V

= VSS-GND

If you are using a different board, make sure you connect to the correct pins.

2) Connecta multimeter to PA1 and PW1 to measure the resistance.

file://mathworks/Public/menghan_jin/ForPallavi/SPIPotentiometer Example.html 1/3

8/25/2014 Communicate with SPI Device on Arduino® Hardware

Control the digital potentiometer

Create an arduino object and include the SPI library.

a = arduino();

Or, you can explicitly specifyitin the Libraries Name-Value pair at creation of arduino object.

a = arduino('com22', 'uno', 'Libraries', 'SPI');

Create an spidev object and specify the pin number for chip select.

d pot = spidev(a, 10);

file://mathworks/Public/menghan_jin/F orPallavi/SPIPotentiometer Example.html

8/25/2014

Send two bytes of data to change the resistance. Since we are controlling channel 1, the first byte should be

Communicate with SPI Device on Arduino® Hardware

0b00010010 which is 12 in hex. The second byte is the new register data in the range of 0 and 255. The following

commands change the resistance of the potentiometer gradually.

Rab
Rw =
for

end

Current
Current
Current
Current
Current
Current

= 10*1000;
52; %

regVal = 0:50:250

pot resista

actual wiper resistance

nce

writeRead (d pot,

pause (2) ;

resistance
resistance
resistance
resistance
resistance
resistance

is
is
is
is
is
is

Rab*regVal/256+Rw;

[hex2dec ('12"),
fprintf ('Current resistance is %d Ohm\n', pot resistance);

52 Ohm

2.

005125e+03

3.958250e+03
5.
7
9

911375e+03

.864500e+03
.817625e+03

Ohm
Ohm
Ohm
Ohm
Ohm

regvVal],

The code runs and displays the readings of the potentiometer.

Clean up

'uint8') ;

Once the connection is no longer needed, clear the associate object.

clear

d pot a

Copyright 2014 The MathWorks, Inc.

Published with MATLAB® R2015a

file://mathworks/Public/menghan_jin/ForPallavi/SPIPotentiometer Example.html

3/3

http://www.mathworks.com/products/matlab/

8/25/2014 Control Servo Motors

Control Servo Motors

This example shows how to use the MATLAB® Support Package for Arduino® Hardware to control a hobby servo motor.

Contents

= Hardware setup
= Create servo object and calibrate the motor
= Write and read Servo position

= Clean up

Hardware setup

= Connectan FS5106B servo motor to Arduino hardware,
1. Connect the power wire (usually red) to the 5V pin.
2. Connect the ground wire (usually black) to the ground pin.

3. Connect the signal wire (usually orange) to digital pin 4.

file://mathworks/Public/menghan_jin/ForPallavi/ServoMotor Example.html 1/4

8/25/2014 Control Servo Motors

DIGITAL

ANALOG IN

SERWO

Create servo object and calibrate the motor

Create an arduino object and include the Servo library.

a = arduino();

Or, you can explicitly specifyitin the Libraries Name-Value pair at creation of arduino object.
a = arduino('com22', 'uno', 'Libraries', 'Servo');
Create a Servo object.

s = servo(a, 4)

file://mathworks/Public/menghan_jin/ForPallavi/ServoMotor Example.html

8/25/2014 Control Servo Motors

Servo with properties:

Pins: 4
MinPulseDuration: 5.44e-04 (s)
MaxPulseDuration: 2.40e-03 (s)

Check your servo motor's data sheet pulse width range values to calibrate the motor to rotate in expected range. This
example uses 7001076 and 2300*10%-6 for the motor to move from 0 to 180 degrees.

clear s;
s = servo(a, 4, 'MinPulseDuration', 700*10"-6, 'MaxPulseDuration', 2300*107-6)

Servo with properties:

Pins: 4
MinPulseDuration: 7.00e-04 (s)
MaxPulseDuration: 2.30e-03 (s)

Write and read Servo position

Change the shaft position of the servo motor from O(minimum) to 1(maximum) with 0.2, e.g 36 degrees, increment.
Display the current position each time the position changes.

for angle = 0:0.2:1
writePosition(s, angle);
current pos = readPosition(s);
current pos = current pos*180;
fprintf ('Current motor position is %d degrees\n', current pos);
pause (2) ;
end

Current motor position is 0 degrees

Current motor position is 36 degrees
Current motor position is 72 degrees
Current motor position is 108 degrees
Current motor position is 144 degrees
Current motor position is 180 degrees

Clean up

Once the connection is no longer needed, clear the associate object.

file://mathworks/Public/menghan_jin/ForPallavi/ServoMotor Example.html 3/4

8/25/2014 Control Servo Motors

clear s a

Copyright 2014 The MathWorks, Inc.
Published with MATLAB® R2015a

file://mathworks/Public/menghan_jin/ForPallavi/ServoMotor Example.html 4/4

http://www.mathworks.com/products/matlab/

8/25/2014 Control Motors Using Adafruit® Motor Shield V2

Control Motors Using Adafruit® Motor Shield V2

This example shows how to use the MATLAB® Support Package for Arduino® Hardware to control servo motors, DC
motors and stepper motors using Adafruit motor shield v2.

Contents

= Hardware setup

= Create shield object

= Control servo motor on the shield

= Control DC motor on the shield

= Control stepper motor on the shield

= Clean up

Hardware setup

1. Attach Adafruit motor shield to your Arduino hardware.
2. Connectan FS5106B motor to port 1, labeled 'Servo 1' on the shield.
3. Connecta DC toy/hobby motor to port 1, labeled 'M1' on the shield.

4. Connect a six-wire Portescap stepper motor to port 1, labeled 'M1' and 'M2' on the shield. Connect the two middle
wires on the stepper motor to the center of the port to ground them together. If you are using four-wire or five-wire stepper
motor, check your hardware specs for appropriate connections of each wire.

5. Connect a battery pack that has three AA batteries to the DC jack, labeled with Power and remove the jumper on pins
labeled Vin Jumper. This step is optional if your stepper motor does not require a high power supply.

file://mathworks/Public/menghan_jin/For Pallavi/AdafruitMotor ShieldV2Example.html 1/5

8/25/2014 Control Motors Using Adafruit® Motor Shield V2

Create shield object

By default, the AdafruitiMotorShieldV2 libraryis notincluded in the server code on the board. Create an arduino object
and include the AdafruitiMotorShieldV2 library to the hardware.

a = arduino('com25', 'uno', 'Libraries', 'Adafruit\MotorShieldv2')

arduino with properties:
Port: 'COM25'
Board: 'Uno'
AvailableAnalogPins: 1, 2, 3, 4, 5]

[0,
AvailableDigitalPins: [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
{

Libraries: 'Adafruit/MotorShieldv2', 'I2C', 'Servo'}

Create an add-on shield object by specifying the required library name paramter:

shield = addon(a, 'Adafruit\MotorShieldv2')

shield =

motorshieldv2 with properties:

file://mathworks/Public/meng han_jin/F orPallavi/AdafruitM otor ShieldV2Example.html

2/5

8/25/2014 Control Motors Using Adafruit® Motor Shield V2

Pins: A4 (SDA), AS5(SCL)
I2CAddress: 96 (0x60)
PWMFrequency: 1600 (Hz)

The I2CAddress of a shield is setto 0x60 by default if not specified. Search for available I12C addresses on bus 0 to
specify a different address.

addrs = scanI2CBus(a,0)

addrs =

'0x60"
'0x70"

Control servo motor on the shield

There are two servo motor ports available on each shield. To create a servo motor object at port 1.

s = servo(shield, 1)

Servo with properties:

MotorNumber: 1
Pins: 10
MinPulseDuration: 5.44e-04 (s)
MaxPulseDuration: 2.40e-03 (s)

Set the position of the servo motor's shaft to its maximum position.

writePosition(s, 1);

See Servo Motor Control example to learn how to use a servo object.

Control DC motor on the shield

There are four DC motor ports available on each shield. Create a DC motor object at port 2.

dcm = dcmotor (shield, 2)

dcm =

file://mathworks/Public/menghan_jin/For Pallavi/AdafruitMotor ShieldV2Example.html 3/5

matlab:helpview(fullfile(arduinoio.SPPKGRoot,'arduinoioexamples','html','ServoMotorExample.html'),'-helpbrowser')

8/25/2014 Control Motors Using Adafruit® Motor Shield V2

dcmotorv?2 with properties:

MotorNumber: 2 (M2)
Speed: 0.00
IsRunning: O

First, change the motor speed to 0. 2. The sign of the value indicates the direction of the motor rotation that also
depends on the wiring of the motor.

dcm.Speed = 0.2;

Start the motor and change the speed while itis running. Stop the motor when you are done.

start (dcm) ;

dcm.Speed = 0.3;
pause (2) ;
dcm. Speed

Il
|
o
N
~

pause (2) ;
stop (dcm) ;

Control stepper motor on the shield

There are two stepper motor ports available on each shield. To create a stepper motor object at port 2 with 200 steps
per revolution.

sm = stepper (shield, 2, 200)

sm =
stepper with properties:

MotorNumber: 2
StepsPerRevolution: 200
RPM: O
StepType: Single ('Single', 'Double', 'Interleave', 'Microstep')

Setthe motor's RPM, e.g revolutions per minute, to 10 and move or step the motor 200 steps in one direction and then
another 200 steps in the reverse direction.

sm.RPM = 10;
move (sm, 200);
pause (2) ;

move (sm, -200) ;
release (sm) ;

file://mathworks/Public/menghan_jin/For Pallavi/AdafruitMotor ShieldV2Example.html

4/5

8/25/2014 Control Motors Using Adafruit® Motor Shield V2

Clean up

Once the connection is no longer needed, clear the associated object.

clear s dcm sm shield a

Copyright 2014 The MathWorks, Inc.
Published with MATLAB® R2015a

file://mathworks/Public/menghan_jin/For Pallavi/AdafruitMotor ShieldV2Example.html 5/5

http://www.mathworks.com/products/matlab/

	Untitled

